If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-16y+4=0
a = 15; b = -16; c = +4;
Δ = b2-4ac
Δ = -162-4·15·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*15}=\frac{12}{30} =2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*15}=\frac{20}{30} =2/3 $
| 36=8y-(5y-15) | | 5(x-1)=2(2x+3) | | -6a+3=-3(a-1) | | 8r-6=2r-20 | | X-6/4+x+2/5=39 | | 6(2x-4)=2(3x+3) | | 7n=18-8n | | 2y=18/17 | | 2x+x2=3 | | .28w=3.08 | | 15^2+18x+10x+12=0 | | B=4/3(j-1) | | 4x+19=6x+11 | | 4+-19=-6x+11 | | 3+6x=-2x+x | | 2(u-3)=7u+14 | | 12X^2+13x-19=0 | | 5x+23=13-41 | | 4r(2r+1)+2r+5=0 | | x=-6/7x+8/3 | | 4/x+2=6/3x+2 | | -3x+3(-2x+13)=120 | | 18/d+13=6/d-3 | | x+47/9=7 | | m+8.2=10 | | 60*y=24420 | | 44=-2v+8 | | 7+3/2x=3x-1/2 | | 4x^-5x+15=7x+10 | | 3+4x=6x-7 | | 60•y=24420 | | 4x-(-5)=7 |